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INTRODUCTION

Circuit simulation has become an indispensable tool in the

design of integrated circuits. Standard circuit simulators, such as

SPICE E1], can predict accurately the circuit performance. However,

the use of these simulators is limited to circuits of several hundred

transistors. As the size and complexity of the integrated circuit

increase, the memory and cpu time requirements for such an analysis

become prohibitive.

U An effective way to improve the speed and reduce the memory

* - requirement of the circuit simulator is to exploit the modular and

repetitive nature of the digital circuits. Digital circuits are

* mostly designed in a hierarchical fashion with the same basic cells

(e.g. logic gates) repeated many times to form the entire circuit.

In a large circuit often only a small percentage of the cells will be

actively changing states at the same time, while the other cells will

remain inactive or 'latent".

The circuit simulation program SLATE (31 (a Simulator with

Latency and Tearing) developed by Ping Yang at the University of

Illinois takes advantage of the properties of the circuits mentioned

r. above to enhance its performance. SLATE utilizes node tearing (51,

[6], to partition the circuit into blocks of subcircuits that can be

analyzed independently. In the analysis, latent subcircuits are by-

!-

Lc ."......
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passed, which results in a significant savings of the analysis time.

Despite the hierarchical nature of the VLSI circuits, the origi-

nal version of SLATE allowed only one level of subcircuits, and the

nesting of subcircuits to form a larger subcircuit is not allowed.

In this research, three schemes have been proposed to modify

SLATE so that it can analyze circuits with subcircuit nesting. The

effects of the schemes on the performance of SLATE will be evaluated.

Chapter 2 reviews the problems of circuit simulation and gives a

comparison between the "standard" simulators and SLATE. Chapter 3

discusses the node tearing method and the latency scheme used in

SLATE. Chapter 4 discusses the three schemes to process nested sub- -

circuits and presents some experimental results on how the perfor-

mance of SLATE is affected at different degrees of network tearing

and latency exploitation. Chapter 5 presents the conclusions.

Finally, the Appendix contains the program reference guide for SLATE.

2..
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CHAPTER 2

REVIEW OF CIRCUIT SIMULATION

With the exception of highly constrained design methodology, it

is usually impossible for a circuit designer to produce a guaranteed

error-free design with known performance under a wide range of

operating conditions. However, with the aid of the "standard" cir-

cuit simulators such as SPICE [1], designers can predict the voltage

and current waveforms of a large variety of circuits accurately and

optimize their designs.

3 However, the speed of the simulator is traded-off with its ver-

satility and accuracy. In order to simulate a wide range of circuits

accurately and be adaptable to new technologies that will arise in

3the future, the program has to use a general algorithm of solving a

system of coupled, nonlinear, ordinary differential equations to

derive the solution of the circuit equations. Hence, it cannot

exploit the special characteristics of a technology to enhance its

performance.

In this chapter we shall review some basic techniques that are

used in "standard" circuit simulation and compare them to the algo-

rithms used in SLATE.

II

.-o. . . .
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2.1. Techniques of Standard Circuit Simulation

The behavior of the circuit being analyzed is described by a set

of differential euations:

f(x(t),x(t),u) 0 (2.1)

x(O)=x 0

where x is the unknown variable vector at time t with the initial

condition x0 at t=0, while u is the input vector and f is a continu-

ous function.

The "standard" circuit simulators are characterized by their use

of the following algorithms in the process of solving equation (2.1):

(1) The derivative i(t) is replaced by a stiffly stable implicit

integration formula, which is a function of x(t).

(2) The time step h and integration order K are controlled automati-

cally to insure the accuracy of the solution.

(3) A quadratically convergent Newton's method is used to solve the

resulting system of nonlinear equations.

(4) The system of linear equations involved in each Newton step is

solved by sparse Gaussian elimination.

After applying the implicit integration formula, equation (2.1)

is transformed into a sequence of nonlinear algebraic equations at

various time points in the form of

s(Zi = 0 (2.2)

-P J..
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where the xi's are the unknown voltage and current values at the time

point t. in the time interval we want to analyze.

Starting at t=O, the nonlinear algebraic equations of (2.2) are

linearized by applying the Newton-Raphson method to a set of matrix

equations:

Ax = b (2.3)

Equation (2.3) is solved by Gaussian elimination. Iteration is

carried out until the solution has converged or the iteration countL
limit is exceeded. The program then uses the solution at the present

time to predict the solution at the next time point in order to ii-

* tialize the iteration process at that time point. The process repeats

itself until the solution at the last time point is found.

The matrix A is set up using the Modified Nodal Approach (MNA)

[8]. Sparse Tableau techniques are applied to reduce the number of

operations needed by the Gaussian elimination to solve for x in

*(2.3).

2.3. Problems of Standard Circuit Simulation

Although the "standard' circuit simulator has been successful in

the past, it still faces many problems, such as:

(1) As the size of the circuit increases, the cpu time and memory

requirements become prohibitive.

b

. . . . . . . . . . . . . * .* - * * . V . -
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(2) The solution of the circuit equations will fail if a zero pivot

is chosen in the LU factorization process.

(3) Analysis time is wasted on computing the solutions of parts of

the circuit that are not actively changing states.

(4) The form of solution procedure used is not suitable for imple--

mentation in machines with parallel processing capabilities.

In the following section we shall discuss the approaches used in

the program SLATE as an effort to alleviate the above problems.

2.4. Algorithms used in SLATE

The circuit simulation program SLATE was originally developed by

Ping Yang at the University of Illinois and then modified later by

the same author at the Central Research Laboratory of Texas Instru-

ments. The program contains various features that alleviate the

problems of the "standard' circuit simulator.

Firstly, the program uses a reordering scheme [3] that avoids

the possibilities of creating zero pivots in the LU factorization

process. With a little extra time spent on the preprocessing phase,

the reliability and accuracy of the equation solution are substan-

tially improved.

Secondly, the latency of the circuit is exploited. Using node

tearing [51, the circuit to be analyzed is partitioned into indi-

vidual subcircuits and the '!rest of the circuit". Each subcircuit can

be analyzed independently and the analysis of the latent subcircuits

. . . • • . . _ • . .. - " - , .
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(including the interconnections between the subcircuit and the rest

of the circuit) can be by-passed. It was shown that latency exploita-

- tion can result in savings of up to 50% of the analysis time [31,[4].

Thirdly, the repetitive nature of the subcircuit definitions is

exploited. Each of the subcircuit definitions, which may appear many

times, is reordered once and their matrix pointers are only generated

once.

r-'

. . .

a. ao ... S . Z . .t . . . . . . . . . . . . . . . . .
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CHAPTER 3

TEARING DECOMPOSITION

The idea of tearing decomposition is to "tear" the circuit to be

analyzed into smaller subcircuits that can be analyzed independently

and combine the solutions of those subcircuits together to form the

solution of the entire circuit. There are two types of tearing tech-

niques: (1) branch tearing that selects a set of tearing branches and

uses their currents as the tearing variables (Fig. 3.1) and (2) node

tearing that selects a set of tearing nodes and uses their voltages

as the tearing variables (Fig 3.2).

In SLATE, the node tearing method is chosen in favor of branch

tearing [3]. It is assumed that the subcircuits will be defined by

the user and the parts of the circuit that are not included in a sub-

circuit definition are automatically assumed to be in the ' rest of

the circuit" block shown in Fig. 3.1 and Fig. 3.2.

Algebraically, node tearing is equivalent to a special reorder-

ing of the circuit equations into a Bordered Block Diagonal Form

(BBDF). Each block corresponds to a subcircuit and the border

corresponds to the interconnections of the subcircuits. -

The BBDF form of matrix reordering has several advantages:

(1) This approach is suitable for the exploitation of latency and

parallel processing.

. .
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k2I

U~4 6 .42

Fig. 3.1 Example of a Network Partitioned into Three
Subnetworks by the Branch Tearing Method.
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*Subnetwork 1 Sbewr

nt2 0

Fig. 3.2 Example of a Network Partitioned into Three
Subnetworks by the Node Tearing Method.
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U(2) The memory requirement is reduced. If storage is limited, indi-

vidual suboircuits can be loaded into memory and analyzed one by

one. This permits a much larger system to be simulated.

In the following sections, we shall discuss the solution pro-

cedures of the matrix equations and the latency schemes used in

SLATE.

3.1~. Constructing the Node Tearing Matrix

Consider the network N shown in Fig. 3.2. It Consists of k sub-

networks NJ N, N2 .. Nk), with subcircuit node sets Cal, a~z'...

az~ and sets of tearing nodes (a** These subnet-

works are connected together wit." tl"v rest of the circuit which have

node set ar As suming there is no coupling between the subnetworks,

the nodal equations of N can be expressed as:

ly I v T
I -stil -si -s'Sl

-2I-st2I -s2 -ss2

* 0 .II.. (3.1)

Y IY v I
~sk I -stkl -sk I=i-ask

-tsl -ts2 -tsk I-tt I-trf -t -ts
- - - - -- - - - - -i - - - - -

0 Y lY v
I ~rt -rrj -rj L-r.

rS
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The matrix equations of (3.1) are solved by LU factorization and

forward backward substitutions. There are several possible factori-

zation and substitution schemes [61. The LU factorization scheme S1

and substitution scheme F, are used (Tables 3.1, 3.2).

Equation (3.1) is solved first by eliminating all the Ysi (step

1 of S1 ) to get the interconnection matrix equations:

Y Y 1 I
-tt -ts " -ts

= (3.2)
Y Y v I

-rt -rr r -rs

kwhr Y t Yt si (Y si)-l yt siwhere Y tt =  t - i=Y y)Y

i= 1

k
and 3 = ( - I -

ts s =1t 51s 55i

Equation (3.2) can be solved to obtain vt and vr (step 3 of Sj)

and the solution of the vsi can be obtained by backward substitution

(steps 4, 5 and 6 of S

3.2. Latency Scheme of SLATE

There are two types of latency, namely, latency in the Newton

Raphson iteration and latency in time, their nature and origins are

- .........-..... -... .... .... ...
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Table 3.1 Factorization Scheme F1 used in SLATE

L 0 U V
-sk - -sk

TI
w L 0 U

- -tk - -tk

L U -Y v ly
[-sk - sk -sk - -sk-stk

-tsk-sk

and

L tkUtk =Yttk y tskUs3k-L -1

- --- - sk -tsk
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Table 3.2 Substitution Scheme S used in SLATE

Stet, S

1 L a I
'-sk - ~ssk

T
2 W Wa

3 L U v I3 -
-tk-tk-tk -tsk-

4 Z V v

-1 
- -tk

5 a ua Z

6 U v

-sk-sk-

*~~ .~' .. .......................
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explained in detail in pp. 138-141 of [3] . For latency in the Newton

Raphsou iteration, suboircuit Nk is latent at the i'th iteration

point if:

(1) IV~( i-l)-VNm( i-2)liea+8rmax(IV~km( i-i)1,

IVN (i-2)1) for m=1,2... (3.3)

and

(2) IV Mni)V(i1Isgr*Ittm)'

IV tk(i-1)I) for m=1,2,... (3.4)

whr a and erare the absolute and relative tolerance, respectively,

and V Nk(i) are the suboircuit and tearing node voltages at the i'th

*iteration. The subcircuit N k will remains latent as long as all its

external nodes remain latent:

(3) V tm~i~)-Vkm( -')ia~~rmax(lVtmijl

IV tk(i-1)I) for m=1,2,.... (3.5)
j=1 ,2 ,...

The scheme 2 proposed in [3] is used to check for latency in

time. A subcircuit Nkis declared to be latent in time if its tearing

node voltages at times tn and t... satisfy:

......................-... .. ........ .
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1) IV tkmm()- t ) ia+rmax( Vtkm(t ) , • "

IV tkm(tfr_)I) for m=1,2,... (3.6)

and the currents of the energy storage elements:

(2) IIkm(tn)-Ikn(tni)l<ec+ermax(IIkm(tn)I,

Im(tn _ ) [) m1,2...b (3.7)

where a is the absolute error tolerance of the current. This condi-c

tion is used to check if the changes of the energy storage elements

are small. Furthermore,

(3) h v1 'km t n) -1kmt.,,, -1) /Ikm tnu) -km tn ir) 21

m=1,2 (3.8)

where Ikm(tn) is the current (or voltage) and Qkm(tn ) is the charge

(or flux) of the capacitor or inductor checked at time t and h..1 is

the time step used. This condition is used to check if there are

slowly varying nodes within Nk.

The subcircuit Nk will remain latent as long as:

(4) IV tkm(tn+j)-Vtkm(tnk-l)l<_sa+ermax(lVtkm(tn+j ) lI, "o

IVt (t _ )  M) 1,2,.."
j=1,2,. (3.9)

. ..
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S CHAPIER 4

PROCESSING NESTED SUBCIRCUITS AND TEARING CONSIDERATIONS

When there is more than one level of subcircuit (Fig. 4.1) nest-

ing in the circuit description, the problems of setting up the matrix

structure and solving the matrix equations become more complicated.

In our research three schemes of processing the nested subcircuit

structures have been considered:

(1) Implement a nested BBDF matrix that can exploit latency in a

hierarchical manner.

I
(2) Tear the nested subcircuits away from their parents to form a

circuit structure with only one level of subcircuit.

(3) Expand the nested subcircuits inside the first level subcircuit

definition to form a circuit structure with only one level of

subcircuit s.

4.1. Scheme 1: The Nested BBDF Matrix

The nodal equations of the circuit to be analyzed can be reor-

dered into nested BBDF form. The interconnections of the first level

of subcircuit are placed on the outermost border of the matrix and

the interconnections of the second level of nested subcircuits are

placed on the next level of border and so forth. The reordering

~.. . -., .: ]
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repeats up to the last level of nesting.

For example, the circuit in Fig 4.1 has a maximum of three lev-

els of nesting. Its BBDF equation matrix is shown in Fig 4.2.

If this form of matrix equation is adopted, latency of the sub-

circuits can be exploited in a hierarchical manner during the

analysis of the circuit. The program checks the latency of the sub-

circuits at different levels of the circuit hierarchy and by-passes

the analysis of the subcircuits starting at the level that they were

found to be latent.

However, this scheme for processing the nested subcircuits has

several disadvantages. Firstly, it is difficult to implement. The

equation matrix and solution procedure become complex with arbitrary

levels of nesting. Secondly, the cpu time saved in hierarchical

latency exploitation may not compensate for the overhead introduced

by the extra latency checking required.

4.2. Scheme 2: Tearint the Nested Subcircuits

In the second scheme, the subcircuits nested inside other sub-

circuits are torn away from their parents to form modified subcir-

cuits with their tearing nodes placed on the border of the equation

matrix. The tearing procedure continues until all nested subcircuits

are levelized.
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LLWL[71111 ii..

Fig. 4.2 The Nested BBDF Matrix 
of the Network shown

in Fig. 4.1.
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" bFor example, the subcircuit N1 in Fig. 4.1 contains the second

level nested subcircuits N11 , N1 2. N12 contains the third level sub-

: "circuits N1 2 1. These subcircuits are torn apart to form modified

t subcircuits without any nesting. Algebraically, this is equivalent

to reordering the tearing nodes of the nested subcircuits on the

* border of the nodal equation matrix:

-sl -sti I -31 -s's1

I IY
Y IY I v I
-s3 I-st3 I -s3 -ss3

Y I Iv 3

S1 Asr I -still -s11 Nssll

-rm N;N2 stt wyD from v' ad h 3ern 'oeso hs

-S12 1 -stl2l -s12 -ssl2

Y Iy I v I
I -s121 I st1211 -s12l -ss121

--- - - - -- -- I - -I- -

Y' Y Y Y Y Y Y' IY v3
-tsl -ts2 -t33 -tsll-tslZ-ts121I -tt I -tr -t -t

-rt I -rr -rl v 3rsJ

After tearing, the nested subcircuits N11 and N12 are torn away

from N" 11 i or wyfo 12 and the tearing nodes of these

nested subcircuits are placed on the border of the matrix. This

scheme has the following characteristics:

- * (1) It is easy to implement. The subcircuit tearing can be done in

the preprocessing phase and the analysis part of SLATE need not

-. *
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be changed.

(2) The number of subcircuits and tearing nodes is usually large

and the sizes of the subcircuits are small; the maximum amount

of tearing is carried out.

(3) More latency checking is required than for scheme 3.

(4) The percentage of latency exploitation is high. Since the sub-

circuits are smaller and more numerous, it is more likely to

find a latent subcircuit.

4.3. Scheme 3: Levelizing the Stubcircuits

In this scheme all the nested subcircuits inside other subcir-

cuits are expanded to form a circuit with only one level of subcir-

cuits with new elements from the nested subcircuit calls added to the

'arent" subcircuit. It has several characteristics.

(1) It is easy to implement; subcircuit expansion can be done in the

preprocessing phase.-

(2) There is less tearing since the nested subcircuits are expanded

instead of torn apart as in scheme 2.

(3) Less latency checking is required than for scheme 2.

(4) The percentage of latency exploitation is usually less than ,

scheme 2. Since the subcircuits are larger and less numerous,

it is less likely to find a latent subcircuit.
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4.4. Experimental Results

To choose between schemes 2 and 3 we shall consider the tradeoff

between the amount of tearing and the savings in analysis time. The

amount of cpu time the program spent in transient analysis can be

divided into three classes:

(1) The time used in evaluating the device models. (This is not

affected by node tearing.)

(2) The time used in solving the matrix equations using LU factori-

zation and forward and backward substitutions.

(3) The time spent on checking the latency of the subcircuits.

In most cases, the time spent on (3) is negligible compared to %

(2). However, if the circuit is large and has a lot of latency,

scheme 3 will be more efficient than scheme 2. Since the subcircuits

generated by scheme 3 is larger, less redundant latency checking is

needed. On the contrary, if the circuit is more active, scheme 2

will be more efficient than scheme 3 since it can exploit latency

more effectively using smaller subcircuits.

The following examples will show that the program user should

partition the circuit appropriately in order to maximize the benefits

that can be gained from latency exploitation.

I."
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Example 4.1

In this example the full adder circuit is analyzed. The adder

cell is implemented using CMOS logic gates (Fig. 4.3). There are

three levels of tearing:

(1) Level 1: The full adder cell is not partitioned, 44 Nf)S transis-

tors are connected together to form a cell with 6 tearing nodes.

(2) Level 2: The cell is partitioned into 2 XOR and 3 NAND gates

with 9 tearing nodes.

(3) Level 3: The cell is partitioned into 9 NAND gates and 4 invert-

ers with 17 tearing nodes.

Note that this is not the most efficient way to form the full

adder circuit, this implementation is used so that tearing and sub-

circuit nesting can be illustrated more clearly. The MOR, NAND and

inverters consist of 16, 4 and 2 MDS transistors respectively.

Two types of input waveforms were applied to test the effects of

tearing on the analysis time:

(1) All the input bits to the adder cell rise from 0 volts to 5

volts. This will cause the maximum amount of circuit activity.

(2) Only one input bit to the adder cell changes from 0 volts to 5

volts. The circuit should have a larger amount of latency.

~ ~-.
. . ~ .t . . .. * * . . . . . . . .
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5 One and two bit full adders were simulated, the results are sum-

marized below in Tables 4.1, 4.2, 4.3 and 4.4:

Table 4.1 One Bit Adder Circuit - All Inputs Changing
(Analysis time = 20 ns, 44 1MDS transistors)

Tear ins -7
Level INLATN ITOTAL NUMNIT TRANAN % LATENCY

1 76 76 76 38.22s 0.

C2 297 380 76 35.15s 21.76

3 683 988 76 34.57s 30.84

Table 4.2 One Bit Adder Circuit -One Input Changing
(Analysis time =20 ns, 44 NOS transistors)

Tearing
Level INLATN ITOTAL NUMNIT TRANAN % LATENCY

1 77 77 77 38.35s 0.

2 267 390 78 32.08s 31.54

3 596 988 76 28.70s 39.67
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Table 4.3 Two Bit Adder Circuit - All Inputs Changing .

(Analysis time = 40 ns, 88 MDS transistors)

Tearing
Level INLATN ITOTAL NUMNIT TRANAN % LATENCY

1 114 122 122 115.73 6.08

2 486 700 140 116.85 30.64

3 1039 1495 115 98.63 30.52

Table 4.4 Two Bit Adder Circuit- One Input Changing
(Analysis time = 40 ns, 88 MOS transistors) -

Tearin s

Level INLATN ITOTAL NUMNIT TRANAN % LATENCY

1 120 126 126 121.57 5.00

2 468 630 126 108.05 25.69

3 1256 1976 152 117.12 36.42

where

I-LATN = Number of nonlatent subcircuits times the number
of iterations

ITOTAL Number of subcircuits times the number of iterations

NUMN IT = Number of iterations in the transient analysis

TRANAN = cpu time spent on transient analysis (seconds)

% LATENCY = 100% times ( I - LNLATN/ITOTAL ) is the

" . .oo . . . .- . - * . - - - - - -- - . - - -o --. -
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measure of latency exploitation in
the program.

We note that when the input is very active (all inputs changing)

and the circuit is small (one bit adder), it is more advantageous to

partition the circuit into smaller blocks so that latency can be

exploited effectively.

However, if the circuit is larger and less active, the overhead

introduced by latency checking can be significant. In the two bit

adder with one input changing circuits, the circuit with lots of

tearing (level 3) has many tearing nodes and a large equation matrix

border. Although the percentage of latency exploitation is much

higher than the circuit with less tearing (level 1), there is almost

no savings in analysis time.

In the worst case, the overhead spent on latency checking can

* outweigh the savings in cpu time gained through by-passing the

analysis of the latent subcircuits. Thus, it is important for the

program user to tear the circuit in the appropriate sizes and at the

appropriate nodes in order to maximize the benefits that can be

gained from SLATE.

2.

.. . . . . . . .. . . . . . . . . . . . ~ . .
.. -.. 2 . -t. 2 . ' L . . . . . - . . - - . - **~ * * _
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CHAPTER 5

CDNCUSIONS

In this report we reviewed the algorithms and some of the common

problems that are faced by the DfstandarD" simulators. We then intro-

duced the SLATE program that uses latency and tearing techniques to

alleviate those problems. -. 4 jC7

The problem of nested subcircuits was investigated. Three we

schemes were proposed to process the nested subcircuit structures.

The amount of tearing and latency checking differs in each scheme.

Some sample circuits have been tested to study the effects of the

amount of tearing on the performance of the simulator. The results

showed that the program user should partition the circuit appropri-

ately in order to gain the maximum savings of analysis time in the

SLATE program.

o .-7 .............................

...............................
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APPENDIX

PROGRAM REFERENCE GUIDE FOR SLATE

The purpose of this appendix is to describe the organization,

data structure and table specifications of SLATE. Program users

should refer to the appendix of [4] for a full description of the

functions and usage of the program.

A.1. Introduction

3 SLATE is a general purpose circuit simulation program that per-

forms nonlinear dc and nonlinear transient circuit analyses. This

appendix describes the internal design of the program. For the funda-

* mental theory and device models used, refer to [3] and (4].

The SLATE program consists of 18,000 Fortran77, C and assembler

statements divided into six major overlays: READINERRCEK,SETUP,

DCT'RAN,DCOP and OVTPVT. Since the program was developed from SPICE2

their program organization and data structures are very similar.

Hence, this report will focus on describing the parts of SLATE that

are different from SPICE2 (i.e., the SETUP and DCIRAN overla;s that

utilize node tearing and latency exploitation). For a full descrip-

tion of the rest of the program and the tables and common blocks

u
used, refer to the SPICE2 Report (7]. ':

.',-.'o','......... . ....- , .....- . .... .-.-- -,- .'. ....-. -"..'. -.. -. . .,"
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Section A.2. briefly describes the dynamic data management

techniques that are used in the program. It can be omitted by readers

that are already familiar with the memory management techniques used

in SPICE2. Section A.3. describes the overlay root. Sections

A.4. and A.S. describe the readin and error checking procedures;

Sections A.6. and A.7. describe the setup and analysis procedures in

detail. Sections A.8. and A.9. gives a summary of the table and com-

mon blocks that are used in SLATE. Finally, a sample circuit descrip-

tion using nested subcircuit calls is included. To conserve space,

the tables and common locks that are also present in SPICE2 are not

listed again.

...........................................
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U A.2. Memory Management System

With the exception of most flags, all the data in SLATE are

stored in the form of managed tables in the /BLANK/ array VALUE,

- which can be redimensioned in the main program according to the

memory availability at each user site. The VAX release version of

SLATE assumes the virtual memory feature and dimensions VALUE() to

100,000 double precision words.

The memory manager in SLATE controls "tables" using 'table

pointers". A "table" is a block of memory; a "table pointer" is a

variable which serves to identify a block and to indicate the origin

of the block in memory. In SLATE, all the data values are stored in

the array VALUE or NODPLC, which are declared to be equivalent.

NODPLC stores integer data while VALUE stores double precision data.

As an example, suppose we have a table OUR of size 100 which contains

*integer data and another table LXY of size 50 which contains double

precision real data. Then the contents of these tables can be

accessed as nodplc(IUR+1) through nodplc(IUR+l00) and value(LXY-1)

*through val ue(LXl4-50) , re spe ctivel y.

The set of procedures that is used to manipulate these tables

are:

entrv7 descriiption

SETMEM initialize the memory manager.
GETMEM(P,S) makes a new managed table of (words) size S

pointed to by tp (table pointer) P.
RE..3M(P,S) reduces by S words the size of the table

pointed to by tp P.
EXT'.EM(P,S) extends by S words the size of the table

- - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - ~
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pointed to by tp P.
SIZ3 M(P,S) sets S to the size in words of the table

pointed to by tp P.
PTRMEM(P1,P2) changes the tp for the tables pointed to by

tp P1 and P2.
CRUNCH fozces a compaction of the dynamically managed

memory.

A 'table entry" table is maintained by the memory manager to

keep track of all the tables allocated by the program. This table

contains a four word entry for each table allocated of the form:

word contents

1 table origin (array subscript of NODPLC)
2 allocated table size (in words)
3 requested block size (in words)
4 address of table pointer -=

Whenever a table management routine is called, it will check for

the validity of the table pointer and the size of the table. Any

internal error in memory management that is trapped will stop the

execution of the program and cause the "table entry" table to be

printed by the subroutine DMPMEM.

.-.

.- -. .. ...... . . .......-........ ... .... -. . .. - . ..... .*- .-....-.. .. . . .• . .-.... .... ,.
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SI A.3. The Overlay Root

. - The overlay root drives the rest of the program. It calls the

first level overlays to process the circuit description, performs

error checking, sets up the matrix structure, analyzes the circuit

and outputs the results. The root consists of the main program and

,*[' _ the subroutines SETMEM, COMPRS, MEMPIR, DMPMEM, TMPUPD, OUINAM, ALF-

- NUM, FIND, DCOP, MDVE, COPY, ZERO, SECOND and LOCF. A flowchart of

the main program is:

initialize;
while (.not. end-of-input)
(call READIN; call ERRCHK; call SETUP;

repeat
( TEMP=-next analysis temperature; call TMPUPD

if (dc transfer curves requested)
(MODE=I, MDEDC=3;
call DCrRAN; call OVTPVT;}

if (dc small signal operation point requested)
(MODE=l, MDDEDC=l;
call DCrRAN; call DCOP;J

if (transient analysis requested)
(MODE=1, MDDEDC=2;
call DCTRAN; call DCOP;
MDDE=2;
call CTRAN; call OVTPVT;)

until (no more analysis temperature)

stop

The variables MDE and MODEDC control the type of analysis that

is performed; they are discussed in Section A.7.

The READIN overlay reads in the circuit description and sets

certain flags that indicate what analyses are requested. It builds

"- the linked lists that store the input data. The ERRCHK overlay per-

............................. *.*....,

. .. . . . . . . . . . . .
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forms miscellaneous error checking. The routine renumbers the nodes

in ascending order (starting with the ground node as 1) and checks

the correctness of the device models used. It also expands all the

subcircuit calls and checks the topology of the circuit.

The SETUP overlay constructs the matrix pointers that are used

to manipulate the matrix coefficients in the DCTRAN overlay. A

reordering scheme that avoids zero pivots is implemented. Node tear-

ing and sparse matrix techniques are used to order the matrix into

the bordered block diagonal form (BBDF) that is used later in DCIRAN

to facilitate the latency exploitation scheme in analysis.

The DCfRAN overlay performs the dc operating point, dc transfer

curve or transient analysis as determined by the variables MODE and

MODEDC. Latency properties are being exploited at (1) the time level,

(2) the subcircuit level, (3) the device level, and (4) the Newton

Raphson level to reduce the analysis time. The details of the latency

exploitation scheme are given in Section A.7. Finally, the OVTPVT

overlay generates the tabular output listings and the plots from the

results of the analysis.

The overlay root contains several utility subroutines that are

used throughout the rest of the program. A brief description of them

is given below (A and B are array names):

name(arauments) description

MDVE(A, I, B, 3, N) move N characters from 8 to A, starting
at the J'th and I'th character positions
respectively; eight character/word is
assumed.

COPY4 (A, B, N) move N integers from A to B
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U COPYS (A, B, N) COPY4(, but for real variables
SCPY16(A,B,N) COPY4), but for complex variables
ZERO4(AN) ZERO A(1) to A(N) integers
ZEROS(A,N) ZERO4), but for real variables
ZERO16(A,N) ZERO4(, but for complex variables
LOCF(LTAB) give the address of the variable LTAB

Io

I S
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A.4. READIN Overlay

The READIN overlay of SLATE is very similar to the one found in

SPICE2. It consists of subroutines READIN, GEILIN, CARD,

KEYSRC,EXTNAM, RUNCON, OUTDEF and NXTCHR. This overlay processes the

input data and builds the linked lists which describe the circuit to

be analyzed and sets certain flags in the common blocks to indicate

which analyses have been requested.

J..

A.4.1. Readin

The subroutine READIN processes elements, device models, subcir-

cuit definitions and the force and initial control cards. The routine

first calls SETMEM to initialize the memory management system. It

then calls subroutine CARD to read in each card. Subroutine FIND is

then called to preset storage for each input element. Analysis and

other control cards are processed by RUNCON. A flowchart of this sub-

routine is:

call SETMEM;
read title; if (end-of-file found) exit
initial ize;
call CARD; if (end-of-file found) exit
NSBCKT = 0;
repeat

(element description: process in READIN
.SUBC1T : set NSBCKr=l,process in READIN
.ENDS : set NSBCKT=Oprocess in READIN
.FORCE process in READIN
.LNITIAL: process in READIN
.END exit
other "." lines, call RTNQON

II

..-., ... ..... ,............ ,',,..'.........-,.-,, , , % % .".,-> . , , ,,.. , ,., . ,, ,.. ,',',,
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Ical 1 CARD;
) until (end-of-file reached)
exit

The program sets the value of the variable NSBCKT to one if a

subcircuit definition card is encountered and resets it when the sub-

circuit definition ends. Note that only one level of subcircuit

definition is allowed and all model and control cards must not be

enclosed within a subcircuit definition. The variables in the common

block /FORCE/ will be set if a .FORCE or .INITIAL card is read (see

Sectior A.9.).

n A.4.. ~Forward References

Since SLATE does not require the circuit description read in an

ordered fashion, sometimes an element may be referenced before it is

actually read in. For example:

.DC V1 0 5 .5
: (other inputs)

Vl 6 7 DC
: (other inputs)

.END

The voltage source V1 is referenced by the ".DC' statement

before it is actually read in. FIND will reserve a linked list ele-

ment for V1 and then store an undefined flag ".UN' in nodplc(loc+2)

of that element. If Vi is defined later, nodplc(loc+Z) will be

filled by some integer datum that is not equal to ".UN' thus,

resolving the forward reference problem.

... .%- |
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A.4.3. FIND

The FIND subroutine is used to locate a particular list element

or to allocate storage if the element cannot be found. It has four

parameters:

parameter description

ANAME name of the linked list element

ID id number of the list to search
LOC subscript of NODPLC, set by FIND to the

location of the element
IFORCE 0=> no restriction

1=> element must not already exist
2=> element is created by subcircuit expansion

A flowchart of FIND is given as follows:

if (NSBCKT.eq.0) then
element in the nominal circuit or device model card
search LOCATE(ID) list for ANAME;

else
element inside a subckt definition

search (ISBCfr+NSBCrT) list for ANAME;
endif

if (element not found) then

( if (IFORCE.eq.2) then
reserve space according to COMMON /LNODS/;

else
reserve space according to COMMON /LNOD/;

endif
set nodplc(loc+2)"!.U*,?(forward reference)

if (NSBC'T.ne.0) nodplc(loc-1)=ID;
return;

else if (IFORCE.eq.0) then
not an element definition request, return;

else if (nodplc(loc+2).eq. ".URI then
element already referenced but not read in yet;
return;

else
element defined already,((loc+2).ne.".UNI,-

attempt to redefine element, set NOGO=I;
return;

endif
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U FIND is called by the READIN and RUNCON subroutines during

readin of the circuit description and also by the SUBCKT subroutine

during subcircuit expansion.

When called by READIN, IFORCE is set to 1. The routine first

determines the value of NSBCKT; FIND searches the LOCATE(ID) linked

list, if NSBCKT is zero (element inside the nominal circuit), or the

(ISBCKT+1) linked list if NSBCKT is one (element inside a subckt

definition). If the element is not in the list, FIND will allocate

A, space for it and returns (a new element is read in). Otherwise, the

element is already in the list, there are two possibilities: (1) The

element was referenced by some other cards before (see the previous

section) and nodplc(LOC+2) is set to ".UN' this is acceptable and

the routine returns. (2) An error occurred since the program tries

to redefine an element that already exists.

* When called by RUNCON, IFORCE is set to 0. FIND searches for

the element in the same manner as described above. When an element is

not in the list, FIND will allocate space for that element and set

(LOC+2)=".UN' (an element is referenced but not defined before).

When called by SUBCrr, IFORCE is set to 2. The program wants to

expand the elements inside the subcircuit calls into the nominal cir-

cuit an, reserve space for them accordingly (see the ERRCHK overlay).

I .4

I.q

...........
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A.4.4. RUNCON

RUNCON determines what type of analyses to perform. It sets the

variables in common blocks DC. TRAN, MISCEL, STATUS, FLAGS and

OUTINF. A detailed list of these common blocks is given in [7].

A.4.5. Storaze

All input data to SLATE are maintained in the form of linked

lists stored in the table IELMT. Elements in the nominal circuit

and elements inside a subcircuit definition are stored in a different

manner.

Elements in the nominal circuit, device models and run condition

information are stored as linked list elements. Each kind of element

(e.g., R, C, and NM)S model definitions) are stored in a separate

linked list identified by an ID assigned by the program (e.g., the ID

of resistors is 1). The beginning of the linked lists of element type

ID is pointed to by the contents of the array LOCATE(ID), which is a

subscript of nodplc.

Each list entry contains a 'ext pointer" that points to the

next element in the list (a zero pointer denotes the end-of-the--

list). Each entry also contains a VALUE subscript, usually called

LOCV, that points to the first word of the real valued storage of the

list element. j

. . . ... ... .... .... ... ...

. . . . -.
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P The elements inside a subcircuit definition are ordered into a

linked list according to the size of their ID, with the element with

the smallest ID located at the head of the list. The subcircuit

.v definition forms a linked list pointed to by LOCATE(20) and each of

them contains a pointer to their subcircuit elements list as shown in

Fig. A.1. Note that the names of the elements inside a subcircuit are

strictly local.

,-V..

I,

I-o
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-A. ERRCHK Overlay

The ERRCHK overlay finishes the processing of input data and

performs miscellaneous error checking. The overlay consists of rou-

.-m tines ERRCHK, SHLSRT, PUTNOD, GETNOD, SUBCKT, FNDNAM, ADDELT, NEWNOD,

CPYTAB, LNKREF, ELPRNT, MDDCHK, TOPCHK, LINK, PUTSNO, GETSNO, NESTX

and RELINK. A flowchart that describes the program flow of this

overlay follows:

check forward references;
construct ordered list of nodes;

U call SUBCKT to expand subcircuit calls;
link unsatisfied references;
set source function defaults and limits
call .LPRNT to print circuit element summary;
call TOPCHK to check topology and print node table;
invert resistance values;
change K to M for mutual inductance;
finish breakpoint table;
check analysis limits;
sequence through the output list;
store the number of elements;
relink expanded subcircuit back to subcircuit call;

1 call 3MDCHK to check and print device models;
call NESTI to process nested subcircuit calls;
call NODRES to reserve internal node for devices; J

call RELINK to process subcircuit definitions;

A.5.1. Forward Reference Check

After all the input data are read, all elements that are refer-

enced by other cards should be defined. Thus the contents of

nodplc(LOC+2) of all the elements should be filled by some integer

data that are not equal to ".UN'. ERRCHK sequences through the ele-

ment list to check that there is no element that is referenced but

[ . . . . . . . . .
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not defined in the circuit description.

A.5.2. Ordered Node Tables

The nodes used in the input circuit description can be any posi-

tive integer with the ground node equals to 0 (e.g., 0,10,4,888, and

76). ERRCHK renumbers the user defined node numbers into a consecu-

tive, compact node set starting from one. The new, ordered node

numbers will be stored in place of the user defined nodes at all ele-

ments, and these new nodes will be used throughout the rest of the

program.

A translation table JUNODE is constructed to give the relation

between the user-defined node set and the node set used in the pro-

gram. The ground node in the program is always set to 1. If the

program node is i, the user's node is nodplc(TUNODE+i). For example,

if the user's specified nodes are: 10, 90, 0, 45 and 80, then,

user's node renumbered node JUNODE table

0(ground) 1 nodplc(IUNODE+1)=O
10 2 ( +2)=10
45 3 ( +3)=45
80 4 ( +4)=80
90 5 ( +5)=90

A.5.3. Subcircuit Expansion

ERRCHK expands out all the subcircuit calls into the nominal

circuit level to check the correctness of the circuit topology and to

q . . . ." ." . . . . . . . . . . . • • . . . . . . . . . S .. A S .P - • .A. . * .~ .1



47

count the number of elements and devices. The elements created from

subcircuit expansion are relinked back to the corresponding subcir-

cuit calls later in the routine.

After the READIN overlay, all the subcircuit definitions are

stored in the ID=20 list and all the subcircuit calls (x-elements)

are stored in the ID=19 list. The subcircuits are expanded using the

algorithm given below:

locx=LOCATE(19); (pointer to the 1st subcircuit call)
while (locx is nonzero)
S( call FNDNAM to determine subcircuit;

check for recursive definition of subckt calls;
call ADDELT to add element data;
loc=first subckt element;
( call FIND to add element space loce;

(loce-l)=:locx,save address of parent;
3call ADDELT to add element data;

loc=pointer to next subckt element;
I
locx=pointer to next x-element;

The subcircuits are expanded in a "top-down' manner. All

nested subcircuit calls (x-elements) defined within a subcircuit

definition will be added into the ID=19 list and these nested x-

elements will be expanded accordingly until the ID=19 list is

exhausted. A list of the element pointers and variables used follows:

itr to element description

locx x-element table
locs subckt definition table
loce new element added

* locv real-valued storage

I-I

* b~ b . . . . .~. ,
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variables description

NUNODS no. of user nodes
NCNODS node count
NUMNOD total no. of nodes

FNDNAM is called to determine the location of the subcircuit

definition that is referenced (locs). Then SUBCKT checks for any

recursive definition of subcircuit calls. The elements in the list

pointed to by (locs+3) are added into the nominal circuit level using

subroutines FIND and ADDELT. A dummy name dble(JELCNT(ID)) is used

when calling FIND to avoid any name conflicts that might occur. Then

(loce-1) of the new element is, set to locx (the parent subcircuit

call that invokes the adding of this element).

A.5.4 Further Error Checking

The routines TOPCHK, ELPRNT, MDDCHK, LNKREF and other error

checking procedures are very similar to their corresponding parts in

SPICE2; their description is not repeated here.

A.5.5 Breakpoint Tables

In transient analysis, SLATE always uses a program calculated

time step regardless of the user-specified print interval. However,

the independent source waveforms frequently have sharp transitions

which would cause an unnecessary reduction in the time step in order
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to find the exact transition time. To overcome this problem, ERRCHK

generates a breakpoint table LSBKPT, which contains a sorted list of

all the transition points of the independent sources. During the

* transient analysis, whenever the next time point is sufficiently

close to the breakpoints, the time step will be adjusted so that the

program lands exactly on the breakpoints.

A.5.6. Relink

After the error checking and processing above, the elements that

were expanded from the subcircuit into the nominal circuit are linked

back into their subcircuit calls using the following algorithm:

locx=LOCATE(19); (pointer to first subckt call)
( for (ID = 1 to 14)

( while (loc is nonzero)
( if((loc-1) equals to locx) then

* remove element from ID list;
add element to list pointed to by (locx+4);

endif
loc=pointer to next element;

locx = pointer to next x element;
oI

A.1.7. Nested Subcircuit Calls

The subcircuits that contain nested subcircuit calls are pro-

cessed by the routine NESTX. After subcircuit expansion, the nested

subcircuit calls will be flattened out and all the x-elements will be

o . , .2 2.; .~.-
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added to the ID=19 list with the pointer to their 'arent" stored in

(locx-1). The routine NESTX rearranges the subcircuit calls and

definitions such that the nested subcircuit calls will be transformed

into one level subcircuit calls. The algorithm of NESTX is given as

follows:

locp = LOCATE(19); (pointer to first x-element)
while (locp is nonzero)
( locx = pointer to first element after locp;

while (locx is nonzero)
(if ( (locx-) .eq. locp) then

add nodlst of locx element to
nodlst of locp element;

end if

locx = pointer to next x-element;

remove redundant nodes in locp;
locp = pointer to next x-element;

locs = LOCATE(20); (pointer to first subckt definition)
while (locs is nonzero)
( loce = pointer to first element;

while (loce is nonzero)
( if ( loce stores an x-element) then

add nodlst of x-element to nodlst
of subckt definition at locs;

remove x-element from list;
endif

loco = pointer to next element;

locs= pointer to next subckt definition;

assign new node numbers for x-elements;
remove empty x-element from ID=19 list;
remove empty subckt definition from I)=20 list;

NESTX scans the ID=19 and ID=20 lists and determines the nesting

relationships between the x-elements. The nested x-elements are torn

away from their '~arent" x-elements. The nodes of the parent that are

connected to the nested x-element it contains are now considered as

external nodes and are added to the external node list. NESTX then

* b 'b . . -. ' . ' %. '. . , • " , , " 
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renumbers these new tearing nodes accordingly.

The nested x-elements that are expanded into the nominal circuit

level in the ID=19 list will remain there throughout the rest of the

program, while those that are in the element list of the subcircuit

definitions ID=20 list are removed.

A.,5.8. Reserving Internal Nodes for Devices

rThe device models used in SLATE may contain internal nodes [4].

NODRES checks the device parameters and reserves additional nodes for

the elements if necessary.

A.5.9. RELINK Subroutine

The RELINK subroutine processes the subcircuits and performs

further error checking. A flowchart of RELINK is given as follows:

locs = LOCATE(20);(pointer to first subckt definition)
while (locs is nonzero)
( renumber nodes for subckt definition;

store subckt information;
locs = pointer to next subckt def.;

sequence through the output list;
check initial and force conditions;

SLATE requires a subcircuit to possess a compact and consecutive

set of nodes with the external nodes ordered in the border of the

BBDF matrix. RELNK renumbers the node set of each subcircuit in the
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ID=20 list and stores their information:

variables description

NODSUB no. of internal nodes
in each subckt

ISTOP no. of external nodes
in each subckt

NXUMVS no. of voltage defined
elements in each subckt

NXSTOP no. of equations in subckt
=SSTOP+NODSUB+NXUMVS

NXMAX maximum of all NXSTOP
NXrOP sum of all NXSTOP

The nodes of each subcircuit are renumbered and stored in place

of the user defined nodes in each element in the list pointed to by

(loc+4) such that:

class of nodes renumbered nodes

internal nodes 1 to NODSUB
(ground = 1)

external nodes NODSUB+1 to
NODSUB+ YSTOP

The internal nodes are renumbered from 1 to NODSUB corresponding

to their size when they are defined in the user's node list; the

external nodes are renumbered from NODSUB+1 to NODSUB+SSTOP

corresponding to the order they appear in the subcircuit external

node list. The routine then sequences through the output list and

checks the initial and force conditions assigned to each subcircuit.

. . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .. .. . . ..
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SETUP Overlay

The SETUP overlay constructs the matrix structure from the cir-

cuit description. It consists of subroutines SETUP, NOFM, SREORD,

REORDR, SREOR, REOR, MATPTR, SWAP, SSWAP and RESERV. The algorithm

used in SETUP is given as follows:

locs = LOCATE(20);(pointer to first subckt definition) ---J

while (locs is nonzero)
( loc = nodplc(locs+3);(beginning of element list)

while (loc is nonzero)
call MATPTR to reserve matrix locations;
loc =pointer to next element;

k )
call SREORD to reorder subckt matrix;
loc = nodplc(locs+3);(beginning of element list)
while (10c is nonzero)

( store matrix locations;
loc =pointer to next element;

locs = pointer to next subckt definition;

for (ID =1 to 14) rest of the circuit
( loc =LOCATE(ID);(pointer to first element)

while (loc is nonzero)
( call MATPTR to reserve matrix locations;

call NOFTRM to set the size of tables;
loc - pointer to next element;

locx = LOCATE(19);(first x-element)
while (locz is nonzero)
( reserve matrix locations for the external

nodes of the x-elements which form the
border of the matrix;

locx = pointer to next x-element;

call REORDR to reorder rest of the circuit;
store matrix locations for the x-elements;
store matrix locations for other elements of

the rest of the circuit;

SETUP sequences through all the subcircuit definitions, calls

subroutine MATITR to build the sparse matrix structures, calls SREORD
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to reorder each of them, and then stores the matrix locations in the

elements.

SETUP then builds the matrix structure for the rest of the cir-

cuit with the interconnections. The external nodes of the x-elements

constitute the interconnection block of the equation matrix. SETUP

determines which nodes in the subcircuit and the rest of the circuit

are connected with the external nodes and reserves their matrix loca-

tions in the border accordingly. The program then sequences through

other elements in the rest of the circuit and builds the sparse

matrix structure, calls subroutine REORDR to reorder the matrix for

minimal fill-in's and stores the matrix locations in each element.

A.6.1. Matrix Structure

SETUP determines the ID of each element in the circuit and calls

subroutine MATPTR to build the sparse matrix structure. Let the

equation matrix be denoted by A and the elements of A be a(i,j),

where i denotes the row and j the column. MATPT R uses the element

stamps described in the 4NA (modified nodal approach) [81 to deter-

mine which locations a(i,j) of A are being filled by introducing that

element and calls RESERV to label those locations. The matrix loca-

tions are stored in two forms. In the matrix construction phase they

are represented in the form of linked lists. Later, the linked list

structures are transformed into sets of matrix pointer systems, which

are used in the analysis part of the program.

.........................m~mmL..-aimimn..I,.,m l............... .......... . .°B ;



V -,-"-7--

55

For example, if a resistor is connected to nodes 6 and 10, then

a(6,6), a(6,10), a(10,6) and a(10,10) of the equation matrix A will ...

be filled. IATPTR introduces a new equation for each voltage defined

element (i.e., L, H, E, V) since each of these elements introduces a

new unknown current into the equations. (See the element stamps of

L [:8].)

The variables and tables used in MATPTR are

variable description

IBR no. of equations
NUMVS no. of voltage defined elements

table description

ISEQ loc of voltage defined element
ISBQID ID of voltage defined element
NODEVS no. of VS connected to that node

A.6.2. Reserving Matrix Locations

Subroutine RESERV reserves matrix locations for the nonzero

entries of the equation matrix. Suppose the program wants to reserve

location (nodel,node2) (i.e., row nodel, column node2), the algorithm

used in RESERV is

if (nodel or node2 is ground) return;
ioc =ISR+nodel;(pointer to first nonzero

column number of row nodel)
if (Ioc is nonzero) then

search list for column node2;
if (node2 is found) then

return;
el se

.. . .
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add node2 to list pointed by ISR+nodel S.-
endif

el se
add node2 to list pointed by ISR+nodel

end if

A list of the tables used in RESERV is given below:

table description

NUMOFF (1 to N) no. of nonzero entries in each row

(N+1 to MUMSIZ) linked lists of node no.
NMDFFC no. of nonzero entries in each column

ISR pointers to beginning of lists in NUMDFF
NDIAG set to 1 if diagonal is nonzero

The table NUMOFF is divided into two parts: the first part of

NUMDFF and the table NMOFFC store the number of nonzero entries in

each row and column, respectively, and are updated whenever a matrix

location is reserved. The second part of NUMOFF contains the linked

lists. Each entry in the ISR table, nodplc(ISR+i), points to the

beginning of the linked list which records the column numbers of

nonzero locations of row i. For example, if a(3,4) and a(3,6) are

nonzero, the list pointed to by nodplc(ISR+3) (row 3) should contain

the nodes 4 and 6 (columns 4 and 6).

To reserve (nodel,node2) the routine searches the ISR+nodel list

(row nodel) and determines if column node2 is in the list. If yes

(nodelnode2) have been reserved before and the program will return.

Otherwise the location is reserved by adding node2 to the list.

: "-" .;." , " "." ~~~.. .'.. -. .. °. "-.. 4 " '- . -"- :r-- . •". '-".:-''
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A.6.3 Compact Matrix Pointers

The linked list form structure used to set up the matrix struc-

ture has the advantage that it can be modified easily. However, this

form of representation is not convenient for the analysis. Thus,

SLATE generates a compact matrix pointer system after all the nonzero

matrix locations are known and uses them later in the analysis.

The rest of the circuit and each of the subeircuits have their

own matrix pointer tables: the matrix locations of the rest of the

circuit are represented by the tables IUR, IUC, ILR and ILC; while

the corresponding tables of the subcircuits are IXUR, IXUC, IXLR and

IXLC. (See Section A.9.4. for the explanation of how the tables are

stored.) Only the tables for the matrix locations of the rest of the

circuit are described below.

The compact matrix pointer system is generated in the subroutine

REOR. It divides a matrix into three parts: the matrix diagonal, the

upper triangle and the lower triangle. The matrix diagonal is stored

separately since it is not sparse. The upper triangle of the matrix

is stored by the tables IUR (upper row) and IUC (upper column). The

lower triangle is stored by the tables ILC (lower column) and ILR

(lower row).

Suppose there are NSTOP equations. Then there should be NSTOP

" rows and NSTOP columns in the equation matrix. The IUR table con-

tains INSTOP entries, each corresponding to a row in the upper trian-.

gle. The i'th entry of IUR, nodplc(IUR+I) points to the beginning of

. the part of the IUC table that stores the column numbers of the

, ., ',. ,, . ,, ., ,, .. .-.. ,, .-.. ... . *. . *..-. .- - . . . .. . , -..... . .. - ., • . .. , ., . -. .- -....-. .
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nonzero matrix locations in the upper triangle at row I.

Similarly, the ILC tables have NSTOP entries each corresponding

to a column in the lower triangle, while nodplc(ILC+3) points to the

beginning of the part of the ILR table that contains the row numbers

of the nonzero matrix locations in the lower triangle at column Y.

The variables used to describe the matrix pointers are

variable description

NSTOP no. of equations

NUT no. of nonzero entries in

the upper triangle

NLT no. of nonzero entries in

the lower triangle

A.6.4. Storing thu Matrix Locations

The values of the matrix coefficients of the "rest of the cir-

cuit" sparse matrix equations are divided into three parts and

stored in the table LVN such that

entries of LVN description

1 to NSTOP stores the coefficients of the
matrix diagonal.

NSTOP+I to stores the NUT nonzero coefficients
NSTOP+NUT of the upper triangle,

"in parallel" with IUC.

NSTOP+NUT+l to stores the NLT nonzero coefficients
NSTOP+NUT+NLT of the lower triangle,

"in parallel" with IR.

Thus, the matrix coefficients and nonzero locations can now be -.

represented by a one-dimensional array. The actual values of the

matrix coefficients will be loaded later by the subroutine YLOAD in
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the DCTRAN overlay. To minimize the loading time, each element in

the circuit should know the positions of the matrix locations it

introduces to the circuit, represented in the form of 'bffsets" of

the LVN table.

The SETUP routine sequences through all the elements of the cir-

_"_ cult. Each element in the circuit introduces several nonzero matrix

locations into the equation matrix according to the Mt4A element

stamps. For each of these matrix locations SETUP finds their

Lequivalent offsets in the LVN table and stores them in the elements.

for (each element in circuit)
( determine the matrix locations from the

NNA element stamp;
for (each of the matrix locations in stamp)
C NODEXI=row number;

NODEX2=col umn number; -

if (NODEXI or NODEX2 is 1) then
one of the nodes is grounded,
INDX = 1;

else if (NODEX1.eq.NODEX2) then
matrix location is on the diagonal,
INDX = NODEXI;

else if (NODEX1.lt.NODEX2) then
matrix location in the upper triangle,
search for column "NODEX2" of row

'?4ODEXV" in the IUC table and let
its position be NS; =

INDX = NSTOP+NS;
else

matrix location in the lower triangle;
search for row 'NODEXI" of column

' 4ODEX2" in the ILR table and let

its position be NS;
INDX = NSTOP+NUT+NS;

endif
store INDX in of the element;

.... _. :.. . , .. ............................. ..... ,.... ....*.- ....... ...-'a
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A.6.5 Subcircuit Reorder

SREORD partitions the subcircuit variables into three subgroups

and reorders them. The algorithm used in SREORD is given as follows:.

reorder the current variables into a subgroup;
swap the external nodes to the border;
IFLAG = 0;
for (NEXNOD = 0 to NXUMVS)
( call SREOR,reorder the I variables;
}

for (NEXNOD = NXUMVS+1 to NSTOP)
( if (NEXNOD > NSEND) IFLAG=I;
call SREOR,reorder the remaining
variables;

)
store the matrix locations in MXLOC;

After choosing the current variables and swapping the external

nodes to the border, the variables should appear in the following

order:

position description

1 to NXUMVS current variables introduced by
voltage defined elements

NXUMVS+l to the rest of the variables
NSEND-1

NSEND-1 to external node voltages
NSTOP

NSTOP = NSE'ND + NODXT

NSTOP is the sum of the number of "internal" subcircuit variables,

NSEND, and external nodes, NODXT.

Each subgroup is then reordered by SREOR using the Markowitz

scheme. The row swapping and node renumbering are recorded by the

tables IXSWAP and IXORDR.

......... . . ... .... ...
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Finally, SREORD determines the offsets of each of the matrix

locations in the matrix pointer system and stores them in the table

SMoc."

A.6.6. Reordering the Current Variables

The algorithm used in SREORD to reorder the current variables

introduced by the voltage defined elements (L, H, E, V) is given as

L follows [3]:

the external nodes are not reordered;
repeat (until all voltage sources are processed)
( the ungrounded node of the grounded voltage

sources are chosen first as POSITIVE,
the voltage sources and nodes chosen
should not be chosen again;

whenever a node of a voltage source is
chosen as POSITIVE, the entry in the
NODEVS table of its negative node is
decreased by 1;

U if the NODEVS value of a node is 1 then it
is selected as POSITIVE. Label the
voltage source and node so that they
will not be chosen again;

swap the external nodes to the border;

Each of the VS (voltage defined elements) in the subcircuit is

pointed to by an entry of the ISEQ table. The variable NITv counts

the number of VS processed by SREORD. In the beginning, NZM is set

to zero (i.e., no element is processed). Each time SREORD processes

an VS:

- NXTv is incremented by one

- the pointer to that element in the ISEQ table

IIl
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will be swapped aside so that it will not
be searched again in the next pass.

- the current variable corresponding to that VS
will be reordered ta the top of the variable
vector, according to the order that it was
chosen.

- the NODEVS entry of the POSITIVE node of that
element is set to 10000.

- store the direction of current flow ICPO
in the chosen VS element.

The choosing process repeats until all VS are processed (i.e.,

NXTV=NUMVS-1).

The table NODEVS contains the number of voltage defined elements

connected to each node. This determines the order in which a node is

chosen as POSITIVE. The ungrounded node of the grounded VS are

chosen first, followed in turn by nodes with the least number of

number of VS connected to it. (The nodes with a smaller number of VS

connected to it have less off-diagonal terms in the matrix equa-

tions.) To prevent any node from being chosen, NODEVS+node is set to

10000. (This represents a very low priority in the reordering

scheme.)

The direction of current flow in a VS is represented by ICPO.

Its value is one if current is flowing from the positive terminal of

the device to its negative terminal, otherwise ICPO=-1.
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A.6 .7 Rest of the Circuit Reorder

The equation matrix of the rest of the circuit is reordered by

the subroutine REORDR. The reordering scheme is almost the same as

the one used in subcircuit reordering. The current variables are

further divided as (1) 1, and 1 (2) V,,, and (3) the remaining vari-

ables. k is partitioned into groups of Iv 'v cv and Iccv' which are

the currents introduced by independent, voltage controlled and

current controlled voltage sources, respectively.

After partitioning and processing of the current variables using

the scheme described in the previous section, each group of variables

is reordered using the Markowitz scheme by the subroutine REOR. The

5 offsets of the matrix locations in the matrix pointer tables are then

computed and stored in the table MLOC.

Sb

1.1

• .

.... ....---- ---- ---
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A.7. DCTRAN Overlay

The DCTRAN overlay performs the dc transfer curve, dc operating

point, initial transient operating point and transient analyses. The

overlay consists of routines DCIRAN, DCDCM, COMCOF, ITERS, TRUNC,

SORUPD, YLOAD, NTRPL8, EVTERM, NXTWR, INTUR8, DIODE, BIT, IFET, MOS-

FET, and MOSFEQi.

The types of analysis to be performed are determined in the

overlay root and indicated by the flags described as follows:

flax value meaning

MODE 1 dc analysis
(subtype defined by MODEDC)

2 transient analysis

MODEDC 1 do operating point
2 initial operating point for

transient analysis
3 do transfer curve computation

INITF 1 converge with 'off' devices allowed
to float .':

2 initialize junction voltages
3 converge with 'off' parameter

held 'off'
4 <unused>
5 first time point in transient analysis
6 prediction step

IGOOF 0 converged
other not converged

A.7.1. DC Overatins Point

If both values of MDDE and .4ODEDC are 1, the dc operating point

is computed. A flowchart of this is given as follows:

initialize;
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TIME = 0.0;
call SORUPD to set sources to time zero values;
INITF = 2;
call ITERS;
print operating point;

The actual sparse matrix equation solution is carried out in the

subroutine ITERS. The value of INITF is set to 2 to initialize the

-" junction voltages.

L A.7.2. Transient Initial Conditions

If the values of MDDE and MODEDC are 1 and 2, respectively, the

DCTRAN overlay will compute a set of initial circuit conditions prior

to the transient analysis. A flowchart for the initial transient

solution is given as follows:

initial ize;
TIME = 0.0;
call SORUPD to set sources to time zero values;
INITF = 2;
call ITERS;
if (converged)

( print solution;)

A.7.3. DC Transfer Curve

The dc transfer curve is simply a repetitive dc operating point

computation performed for a range of values for one independent vol-

tage or current source in the circuit. If the values of MDDE and

MODEDC are 1 and 3, respectively, the dc transfer curve is computed.

|. .- '-°.
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A flowchart of this is given as follows:

initialize; TIME = 0.0;
call SORUPD to set sources to time 0 values;
INITF = 2;(initialize junction voltages)
set all subckts to be nonlatent;
for (each source value)
( if (INITF .ne. 2) INITF = 6;

( call ITERg;
if (not converged) stop analysis;
locx = locate(19);(first subckt)
while (locx is nonzero)
{ check for the latency condition;

if (subckt is latent) then
nodplc(locx+9) = 1;

el se
nodplc(locx+9) = 0;

endif

store outputs;
)

All subcircuits are assumed to be nonlatent in the beginning.

During iteration, the program checks all the subcircuits for latency -"

at each of the source values using the conditions of equation (3.4).

The voltage values of the present and previous iteration points are

stored in tables LVIM1 and LDO, respectively.

The analysis of subcircuit Nk will be omitted in the next itera-

tion point and afterwards until it is determined to be nonlatent

again.

After the first sweep point, the value of INITF is set to 6.

The piecewise nonlinear method [3) is used to predict the solution at

the next sweep point and used as the initial guess at the next itera-

tion.

,-.- -.. ...... . .. .. . -. . . ...... . . . . .... . .. . .- . .-. .-. .'..,-.- . .-.. ; '.-." ."...... . .- . .. . ..' " . ....
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A.7.4. Transient Analysis

The transient analysis is performed if MDIDE2. A flowchart of

the transient analysis is given as follows:

F initialize; TIME=0.O; DELTA-ISTEP;

savout: store outputs in LOUTPT table;
newtim: TINE - TINE+DELTA;

if (TIME > TSTOP) exit;
f adjust DELTA for breakpoint table values;

call SORJPD;
call ITER8;

if (converged) goto tsterr;
(TIME = TINE-DELTA;

DELTA - DELTA/8;
Soto tsdel;

tsterr: locz LOCATE(19); (first subckt)
while (locx is nonzero)
Iif (all external nodes are latent) then

[if (nodplc(locx+9).ne.l) then

else ~ lcx9 = 1

end if

call TRUNC.
if (error acceptable) Soto savout;

TINE - TIME-DELTA;
DELTA - DELNEW (computed in TRUNC);

tsdel: if (DELTA ( DELM) stop analysis;
goto newtim;

There are four different latency conditions possible for a sub-

circuit:

(bocz+29) condition of subckt

0 not latent -

1 latent at the time level



--

68

(determined in TRUNC and DCrRAN)
-1 latent in Newton-Raphsoh iteration

(determined in ITERS)
-2 all energy storage elements are latent

(determined in YLOAD)

The scheme 2 proposed in (3] is used to determine the latency in

time. After each iteration time point, DCTRAN checks the external

node voltages of each of the subcircuits: (1) If the changes of all

the external node voltages between the previous and present time

points are less than the tolerance and the subcircuit is originally

latent in time, it remains latent in time (see equations (3.3) and

(3.9)). (2) If all the external nodes are latent but the subcircuit

is not latent in time, it is declared to be latent in the N-R itera-

tion. (3) If the external node voltages are not latent, the subcir-

cuit is declared to be nonlatent.

A.7.5. Determining the New Time Ste

The estimation of the new time step to be used is performed in

the subroutine TRUNC. The algorithm used in TRUNC is given below:

DELNEW = TSTOP;
for (each of the energy storage elements)
( branch to TERR; 1
locx = LOCATE(19)
while ( locx is nonzero)
if (subckt latent in time) goto nxckt;
INEED2 - 0;
if (subckt latent in N-R iteration) INEED2=l;
for each (energy storage element in subckt)
( branch to TERR;

I
if (subckt latent in N-R iteration) then

nodplc(locx+9) = INEED2;

*i 1. *< ~ *.. .Ak t h t . s .~~
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end if
nxckt: bocx nodplc(locx) -

TERR: find current and charge error tolerance;
estimate new time step DEL for this branch;
if (element is not slowly varying) INEED2=O;
DELNEW = min(DELNEW,DEL),

The program checks if all the energy storage devices inside the

subcirCUits are slowly varying (equation (3.8)) and sets the value of

nodplc(locx-9) accordingly.

k.4. The Iteration Scheme in SLATE

The actual Newton Raphson iteration is controlled by the subrou-

U tine ITERS. The algorithm used in the subroutine is listed below:

ITERNO NN~CDN =0;
done = .false.
while (not done)

* ( call YLOAD;
if ((NOSQ..V is nonzero) and

(analysis is initial transient)) exit;
ITERNO - ITERNO1l;
switch (INITF) of

("l": if (NONO0) exit;
goto solve.

D2eIt INITF=3; goto solve;
"3" if (NONQON-0) INITF=l;

goto solve;
Coo Soto"5',' 6'': INITF=l;

solve:
if (ITERNO~teration limit) exit;
if (IFINI is nonzero) force node voltages;
call DCDCMP;
call DCSOL;
NONTMP -NONCtN;
NONWDN - 0;(.done.)
if (NONT.MP-0 and not 1st iteration) then

if (NOT ALL circuit node voltages
converged) NO4NNMONCDN+l;
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endif
locx = LOCATE(19); (first subckt)
while (locx is nonzero)
{ if (all external nodes converged) then

if (nodplc(locx+9)= 1 or -1) goto nxtckt;

if (nodplc(locx+9) =-2) nodplc(locx+9) -1;

else
nodplc(locx+9)=0;

endif
goto sdcsol;

if (NOT ALL internal node converged) then
NONDN =NONCDN+l;

nodplc(locx+9) = 0;

endif
nxtckt: locx = pointer to next subckt;

sdcsol: back substitution to solve subckt equation;

ITERS first calls YLOAD to load the equation matrix and decom-

pose the subcircuit matrices. It then calls DCDCMP to LU factorize -

the rest of the circuit and interconnection matrix and calls DCSOL to

solve them (steps 3, 4 and 5 of algorithm S ITER8 then checks and

updates the latency of the subcircuits and uses SDCSOL to obtain the

solution of each of the subcircuit blocks (step 6 of algorithm S 1

Some subcircuits might converge in fewer iterations than the

others. They can be declared to be latent at the Newton-Raphson

level (nodplc(locx+9)-1) if (1) nodplc(locx+9)-2 (determined in

YLOAD), and (2) all external and internal node voltages have con-

verged. The loading, LU factorizing, forward and backward substitu-

tions of these latent subeircuits will be omitted until they are

declared to be nonlatent again.

If the program wants to force the node voltages (IFINI=1), it

will store the desired values of the variables in their positions in

b ,7
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the solution table LVN and set their corresponding entries in the

NNDIAG table to -1. The LU factorization, forward and backward sub-

stitution of the rows and columns corresponding to that node will be

-omitted.

A.7.7. Element Load

The subroutine YLOAD loads the equation matrix, decomposes the

subcircuit matrices and carries out steps 1 and 2 of the equation

solution procedure S The algorithm used in the subroutine is given
V*

below:

NLATENT = 0;(assume elements are latent)
for (id= 1 to 14)
( load elements in rest of the circuit;

if (LATENT is nonzero) NONCON=NON(DN+1;
locx - LOCATE(19);

* while (locx is nonzero)

LATENT = 0;
if (subckt is latent) goto nsbckt;

LATENT = 0;
load elements in the subckt;
if (LATENT = 0) then

- nodplc(loox+9) = -2;(all elements latent)
el se

NONCDN MON(DN+l;
endif

nsbckt: locx = nodplc(locx);

if (INITF = 2 or 3) NONCON=I;
locx = LOCATE(19);
while (locx is nonzero)
{ decompose subckt submatrices, perform

forward substitution, goto sdcdcm;

solve for y =WT a;

* --- .
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The matrix coefficients are loaded one element at a time. A

concise description of how each element type is loaded can be found

in (7] . The rest of the circuit is loaded first, followed by the

subc i rcui t s.

In order for a circuit or subcircuit solution to converge, all

energy storage elements and controlled sources must remain latent

(i.e., LATENT=O). The changes of their values between the last two

iterations must be less than the tolerance TOL (equation (3.8)).

After loading, the matrices of the subcircuits are LU factorized

and forward substitution is carried out (step 1 of algorithm S1 of

[3]) to solve for a, followed by step 2 to find the vector y. The

results (stored in the table LXVN) are subtracted from the source

vector Itsk (the right-hand side of the equation in step 3 of S1 ) and

stored in the table LVN.
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A.8. Linked List Specifications

*The linked list elements used in SLATE are essentially the same

as those used in SPICE2 [7]. Only the specifications of the subcir-

cuit calls and definitions are given. All integer data referred to

are stored in the array NODPLC; all real and character data values

are stored in the array VALUE. The NODPLC subscript of the linked

list element is called LOC, while NODPLC(LOC+1) stores the pointer

LOCV, which is a subscript of VALUE that contains the real valued

L. storage of that element.

U:o

g~i

.........................................



74

A.S.1. Subcircuit Call

ID = 19

- 1: subckt info
LOCX+ 0: next pointer

+ 1: LOCV LOCV + 0: element name
* 2: tp(external nodes)
+ 3: tp( subckt definition)
+ 4: tp(element list)
+ 5: NOFFSV
+ 6: NODXT
+ 7: LXNOD
+ 8: NXTOP
+ 9: latency flag
+10: NDIST
+11: tp(nodes and node voltages forced)
+12: size of forced node table at (locx+11)
+13: tp(nodes and node voltages initialized)
+14: size of initialized node table at (locx+13)

Comments:

(1) nodplc(locx+4) points to a linked list of elements expanded from

the subckt definitions (see the ERRHK overlay).

(2) nodplc(locx+7) points to the table LXNOD which stores the matrix

locations of the bordered block created by the tearing nodes.

(3) nodplc(locx+9) indicates the latency condition:

1 latent in time
0 not latent

-1 converged in N-R iteration
-2 all energy storage devices and

controlled sources converged

(4) LDO+NDIST is the beginning of the table that stores the subckt

tearing node voltages.

.~ .r-
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3 (5) The forced node table contains the list of nodes to be forced

and their voltage values. It is constructed when a .FORCE card

is read with the subckt's name on it. If

LOCT = nodplc(locx+11) = ptr to forced node table, and

NTMP = nodplc(locx+12) = size of LOCr table

_ then

LOCr+ 0: NODE1
+ 1: V NODEi= node to be forced
+ 2: NbDE1
+ 3: v 2 Vi  = forced node voltage

+NrTMP-2: NODE
+NTMP-1: Vk

k

(6) The initialized node table contains the list of nodes to be ini-

tialized and their values. It is constructed when a .INITIAL

card is read with the subckt's name on it. The data are stored

in the same manner as in the force node table.

r-

"2"..".:
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M.8.2. Subcircuit Definition

ID =20

- 1: subckt info
LOCS+ 0 : next pointer

* 1: LOCV LOCV + 0: element name
* 2: tp(table of external nodes)
* 3: tpelement linked list)
* 4: NISTOP
+ 5: NXUMVS
* 6: NOFFSW
+ 7: NOFFUC
+ 8: NOFFLR
* 9: NOFFHL
+10: NSENID
+11: size of the LXVN table
+12: NUT
+13: tp(old external node list)

Comment s:-

(7) Size of LXVN table =no. of nonzero matrix locations + no. of

equations NUT+NLT+NSTOP+NSTOP.

(8) The user's defined internal nodes are stored in a table pointed

to by nodplc(locs+13).
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A.9. Labeled COMMON Blocks

The CO OMN blocks that are used in SLATE only are listed below.

A.9.1. CY

The CWWMIN block CY contains the tables and variables used in

setting up and reordering the matrix structure of the nominal cir-

cuit.

name description

NUMVS2 no. of independent voltage sources
NSTOP1 ptr to the beginning of the

12 equations
NSTOP2 ptr to the beginning of the V

i equations

The other variables can be found in the SPICE2 report (7]; they

are not listed again.

A.9.2. CP1

The COMMON block contains the tables that store the tables used

in subckt reordering. The beginnings of the tables in CP3 are given

by adding offset values, contained in CP2, to their corresponding

tables in this block.

A.

. . . . . .
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name descrip~tion

ISSWAP IXSWAP--IS SWAP+ NOFFSW
ISORDR IXORDR= ISORDR+NOFFSW
ISUR IXUR--ISUR+NOFFSff
ISUC IXUC--ISUC+NOFFUC
ISLR IXLR-7ISLR+NOFFLR
MSLOC MXLOC=-MSLOC+NOFFML

A. 9.3. CP2

This ODMMON block contains the offsets of the subcircuit tables

from the tables used in the ODMMON block CP1.

name description

N06 <unused>-
N08
N04
NOFFSW <see CDM1DN block CP1>
NOFFUC "

NOFFLR" "

NOFFnI

A. 9.4 . CP3

This CDMMON block contains the subcircuit tables used in SETP

and the subckt matrix pointer tables.

name descriotion

IXSWAP tp(record of equation swaps)
IXORDR tp(record of equation reorder)
IXUR tp(IXUC indices)
13LC tp(IXLR indices)
IXUC tp(nonzero columns in upper triangle)
IX LR tp(nonzero rows in lower triangle)
MILOC tp(compact matrix pointers)
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A.9.5. CP4

This C 1DMDN block contains the individual subcircuit matrix

pointer tables and the tables used in the matrix setup phase.

name description

NOFFSV offset of LVN from the top of LSVN,

stored in nodplc(locx+5)
NXrOP offset of LXVIMI from the top of LSVIM1,

stored in nodplc(locx+8)
NXMAX the maximum no. of equations in one subckt

A.9.6. CP.

This aDMIDN block contains the tp that stores the subckt matrix

U coefficients.

name description

LXVN tp(right-hand-side of subckt equations)
g LXYNL LXVN offset: matrix diagonal terms

LXYU LXVN offset: matrix upper triangular terms
LXYL LXVN offset: matrix lower triangular terms
LXVIM1 tp(previous subckt solution, copy of LXVN)
NXSTOP no. of equations in the subckt

A.9.7. CP6

This COMMN block contains the tables that store all the double

precision tables contained in the COMOtN block CP5.

r -S
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name descriiption

LLSVIM tp(used to create LSVIM1)
LLSVN tp(used to create LSVN)
LSV IMI LIV IM1=LSVIM1+NITOP
LSVN LXVN= LSVN+NOFFSV

A.1.8. CPY7

This WDMN block contains the variables used in suboircuit

equation reordering.

name description

NXUMVS no. of independent voltage sources
NXUVS2 <unused>
NXTOPi ptr to the beginning of the V equations
NflTOP2 (unused>
MNID =NSTOP-NODfl = no. of subckt equations

- no. of tearing node equations

A.9.9. CP8

This ODMP&ON block is used in subroutine YLOAD.

name descrigtion

LATENT =0 => all energy storage devices are latent

A.9.1O. CP9

This OMP.IDN block contains the subcircuit latency statistics.
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name description

ITOTAL total no. of subckt times the total no. of d
ILATNT no. of nonlatent subckt times the no. of

iterations for those subckt
NNDIAG tp(nodes to be forced or initialized)

(NNDIAG+node)=-1 0 LU factorization and

back substitution of the node should be

skipped. (LXVN+node) contains the forced

A.9.11 EXT

This Q3H1MKN block contains the variables that record the size

of the tables contained in ODMMN block CP1.

name descrilption

NMMXT size of NSLOC table
NUEfl size of ISUC table
NLREfl size of ISLR table

3NUMEIT size of NUMOFF table
NUMSI ptr to the list of reserved nodes in

the table NUMOFF (used in RESERV)

A.9.12. FORCE

This CDM3EN block contains the variables used in forcing or ini-

tializing the node voltages.
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name descrivt ion

NOFOR no. of nodes to be forced
IVFOR tp(values of forced node voltages)
INFOR tp(nodes to be forced)
NOINI no. of node to be initialized-
IVflNI tp(values of the initialized node voltages)
ININI tp(node no. to be initialized)
IFINI =1 => nodes have to be initialized
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Examp~le A.1

This is an example of a 4 bit full adder implemented using nested

subcircuit calls:

* Four Bit Full Adder Using Nested Subcircuits
* two input nand gate: input(2) output vdd
.subckt nand 1 2 3 4
ml 3 1 4 4 cmosp 1=3 w=-14 ad=63 as=63 asd=42 ass=42 rdd=35 rss=35
m2 3 2 4 4 cmosp 1=3 w=14 ad=63 as=63 asd=42 ass=42 rdd=3S rss=35
.3 3 1 5 0 cmosn 1=3 w=7 ad=49 as=25 asd=28 assl14 rdd=3S rss=35
m4 5 2 0 0 cmosn 1=3 w--7 ad=25 as=49 asd=14 ass=28 rdd=35 rss=35
.ends
*inverter :input, output, vdd

* subckt imv 1 2 3
mil 2 1 3 3 cmosp 1=3 w--14 ad=63 as=63 asd=42 ass=42 rdd=35 rss=35
.2 2 1 0 0 cmosn 1=3 w=7 ad=49 as=49 asd=28 ass=28 rdd=35 rss=35
.ends
*exclusive or gate
.subckt xor 10 20 30 40
x1 10 50 40 myv
x2 20 60 40 inv
x3 10 6070 40 nand
x4 20 50 80 40 nand
x5 70 80 30 40 nand
.ends
*1 bit full adder: input(2), cmn, coot, su mi vdd
.subckt adder 1 23 4 56
x1 1 27 6 xor
x2 7 3 56xor

x3 7 3 86 nand
x4 1 2 9 6 nand
x5 8 9 46nand
.ends
*All input bits changes fro mi 0 volts to 5 Volts

va 1 0 pulse (0 5 On 2n 2n l00n 1000n)
vdd 6 0 dc 5v
x1 1 1 1 5 6 adder
%2 1 14 910 6 adder
x3 1 1 913 146 adder
x4 1 1 13 17 18 6 adder
.model cmosp pmos vto=-1.1 n=5e16 kp~gu cox=.^245f lambdarn.025
.+ be-.52 ms-.33 kpn=.0918f lgos-.4 lgod=.4 tldl1.0
.model cmosn nmos vto=1.1 n=1-el6 kp-22u cox-.345f lambda=.052
be-.52 ms-.33 kpn-.0918f lgos-.4 lgod-.4 tld=l.0

.options nolist noopts no mod nonode

. . .. .. 7
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.tran in 80n

.print tran v(1) v(5) v(9) v(13) v(17) v(18)

.end

ii

*.~.-: -'/
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